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Abstract— Voice assistance (VA) is gaining domestic
consumer attention in a variety of products, such as
Amazon Alexa, Google Home, Apple’s Siri, and
Microsoft’s Cortana. Furthermore, VA has recently shown
its usefulness and ability to improve inpatient experience
in hospitals and clinics. Nevertheless, none of the VA
products has an accuracy rate greater than 90%. The
accuracy decreases even more in noisy or public
environments. Hence, improving VA accuracy in noisy
environments requires a speech signal algorithm with good
quality and intelligibility. There is great interest in
developing an objective intelligibility measure that shows
maximum correlation with subjective speech intelligibility
and that can measure the effect of speech enhancement
algorithms on the processing of noisy speech signals. In
this paper, Euclidian distance-based speech intelligibility
prediction is proposed to measure the correlation with
subjective intelligibility in different noisy environments.
This paper also presents a comparative analysis and
general background research in speech intelligibility
improvement. The results show that no single algorithm is
effective in improving the intelligibility of speech signals.

Keywords—Euclidian distance, speech enhancement,
speech intelligibility, voice assistance

I. INTRODUCTION

OICE assistance (VA), which is sometimes referred to as

a voice user interface (VUI), has become widely used in
smart devices and household personal assistants, such as
Amazon Alexa, Google Home, Microsoft’s Cortana, and
Apple’s Siri. VA is used to control home smart devices and
Internet-of-things (IoT) devices to provide a better overall user
experience. Moreover, the applications of VA in hospitals and
clinics showed high satisfaction in terms of inpatient
experience. Patients can request assistance directly from VA
instead of waiting for the nurse to answer basic inquiries, such
as when the next meal will be available, the food they are
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allowed to consume, the time of the doctor’s next visit, or help
with controlling the heating or lighting systems.

Speech enhancement is the combination of improving both
the quality and intelligibility of speech signals. In real-world
environments, various noises degrade actual speech signals.
Hence, to improve speech quality, various algorithms have
been designed and presented in the literature [1-12]. Most of
these speech enhancement algorithms improve quality but
degrade intelligibility; these algorithms can be classified into
four main types: spectral subtractive, statistical model-based,
subspace-based, and Wiener-type algorithms. Spectral
subtractive-type algorithms include Berouti spectral
subtraction (Berouti-SS) [1], multiband-SS [9], Boll-SS [2],
parametric-SS [11], Scalart-SS [10], and spectral subtraction
using reduced-delay convolution (RDC-SS) [6]; the statistical
model-based algorithms include the log-minimum mean-
square error (MMSE) [5], [12], MMSE spectral estimator for
the short-time spectral amplitude (STSA) (STSA-MMSE) [4],
and Cohen-MMSE [3]. The Karhunen-Loeve transform (KLT)
[7] and perceptual KLT (PKLT) [8] are subspace-based
algorithms.

A speech signal with good quality and intelligibility is
required for many applications, such as speech recognition and
communication hearing aids [13]. In previous studies, most of
the reported algorithms enhance quality and reduce
intelligibility [14-17]. Some studies used audio file processing
software to generate noisy speech signals for analog
communication channels [13]. To measure the intelligibility of
speech, an algorithm that produces the actual intelligibility of
noisy and processed speech signals must be developed.

As shown in the literature, voice familiarity, among many
other factors, improves speech intelligibility [18], and because
a subjective intelligibility measure is much more expensive
and time consuming, an effective objective intelligibility
prediction measure is also required. In the literature,
significant attention has been focused on objective speech
intelligibility prediction measures [19], [20]. Objective speech
intelligibility measures can be classified into two types:
measures with a signal-to-noise ratio (SNR)-based design and
correlation-based implementations. SNR-based



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2020.14.45

implementations include the articulation index (AI), speech
transmission index (STI), frequency-weighted segmental SNR
(fw-SNR), and speech intelligibility index (SII); correlation-
based implementations include the normalized covariance
metric and short-time objective intelligibility (STOI)
measures. Methods based on coherence are also provided for
objective speech intelligibility predictions, i.e., magnitude
squared coherence (MSC), coherence SII (CSII), coherence
STI, band importance function-based CSII, and covariance-
based STI (CSTI) [19]. All of these measures are useful for
only a specific noise environment and are less appropriate for
speech enhancement methods in which degraded speech is
processed by time-frequency variation-based gain functions.
These measures also do not produce objective intelligibility
values that are similar to subjective intelligibility values, and
most of the recently published measures remain based on
SNRs and correlation [21].

The contributions from the proposed study are described as
follows. First, a Euclidian distance-based objective speech
intelligibility prediction measure is implemented and
compared with other commonly used measures. Second, the
performance differences in the speech intelligibility values
produced by the algorithms are presented. From the
comparative evaluation results presented in the tables, it is
simple to determine one or more appropriate algorithms that
preserve or enhance the speech intelligibility aspect of noisy
speech signals.

The remainder of this paper is organized as follows: Section
IT presents the speech intelligibility evaluation parameters.
Section III presents the proposed Euclidian distance-based
speech intelligibility measure. A description of single-channel
speech enhancement algorithms is provided in Section IV.
Simulation and experimental results are discussed in Section
V for speech intelligibility evaluations, and Section VI
presents future directions and issues. Finally, conclusions are
drawn in Section VII.

II. SPEECH INTELLIGIBILITY MEASURES

In this evaluation, five commonly used objective measures
for predicting the intelligibility of speech under various noisy
conditions are evaluated. A description of these objective
intelligibility measures is given along with the proposed
Euclidian distance-based objective measure.

A. Frequency-Weighted Segmental SNR (fw-SNRseg)

The frequency-weighted segmental SNR is calculated using
equation (1) [22]:

e X (J,m)*

W (j,mlog,,——— PP
1002 (X(om) = X (j,m))
k
M s > W(j,m)

j=1

)

where K is the number of bands, M is the total number of

frames, X ( j, m) is the critical-band magnitude of the clean

. th
signal at the jth frequency band at the M frame, and
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)Z(j,m) is the corresponding enhanced speech signal. In

equation (1), W( j, m) is the weighting function, and p is the
power exponent, which varies according to the speech. The
weighting function is given in equation (2) as follows:

W(j,m):X(j,m)p )

B. Short-Time Obijective Intelligibility (STOI)

The STOI is based on short-time segments, i.e., 386 ms.
This short segment is selected to obtain maximum correlation
with the subjective speech intelligibility. The intelligibility
measure is defined as the linear correlation between clean and
enhanced time-frequency (TF) units and is given by equation

(3) [23]:
Z(Xj(n) -

S-S X 0 ik
” NS “ N 3)

In equation (3), X ;(n) and Y;(n) are the clean and

LZX ) (- T m)
I, (m) = '

PRAWE

enhanced signals, respectively. The overall average of the
intelligibility measure from all bands and frames is calculated
using equation (4), where M is the total number of frames and
j is the number of one-third octave bands.

| = LM D d;(m)
M @
C.Fractional Articulation Index (fAl)

This type of intelligibility measure is based on the SNR
values. The fraction or input SNR is calculated using equation
(5) [241:
min(SNR ;, SNR;)

SNR

fSNR =
0

if SNR ;> SNR_
else

j
U (5)
where SNR j is the ratio of the output SNR in band j to the
noise spectrum and is the true SNR. The lowest SNR is
SNRL ,and fSNR; is bounded from 0 to 1. The weighted
average is calculated across all bands to obtain fAl in equation

(6):

£AI 1

- K
> W,

=1

K
> "W, < fSNR,;

i=1

(6)
D.Mean Opinion Score (MOS)

The MOS is a listening quality objective measure with a
value between 1 and 5. The MOS scale is defined as
5=Excellent, 4=Good, 3=Fair, 2=Poor, and 1=Bad [25].

MOS = A+—z

where A, B, C, and D are the variables given in [19] and
PESQ is the perceptive evaluation of speech quality calculated
from [26]. The range of the PESQ is between -0.5 and 4.5. In

(7
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this measure, the first step is level equalization to the listening level.
Clean Speech——» 113 octave Euclidian Sumaﬁc f?;/:;gge of 1
band » Framing » distance —» L D=— ZEUj,m
Processed Speech—— jecomposition coefficients Euclidian distance IMIT
coefficients
EU

Jsm

Fig. 1 The Euclidian distance-based speech intelligibility measure is a function of clean and processed speech

III. EUCLIDIAN DISTANCE-BASED SPEECH INTELLIGIBILITY

MEASURE

The Euclidian distance (EU)-based speech intelligibility
measure is a function of clean and processed speech, as shown
in Fig. 1. The output D is a scalar value that has average
intelligibility with processed speech. A sampling frequency of
8 kHz is used to obtain the useful frequency range for speech
intelligibility. A new objective speech intelligibility measure
that is based on the Euclidian distance function given in
equation (8) is proposed.

EU :\/(><c|(j9m)_Yenh(j’rn))2 8)

The sum of the EU coefficients of all frames is averaged
using equation (9):

1
ERTVR gt
bm ©)
where EU is the Euclidian distance value and Xd and Yenh

are the clean and enhanced speech signals, respectively.
Additionally, D is the average value from all frames and bands
and is normalized between 0 and 1 by using equation (10).

1
EUI = o) (10)

The basic procedure begins with a discrete Fourier
transform (DFT)-based one-third octave band decomposition.
A total of 15 one-third octave bands are selected, where the
lowest center frequency is 150 Hz and the highest one-third
octave band center frequency is approximately 4.3 kHz. The
one-third octave band is defined in equation (11):

ky (1)1

>

k=k (1)

X; (m) = %(k,m)|’

an
where R(K,m)denotes the K™ DFT bin of the M" frame of
clean and processed speech. The one-third octave band edges
are given as kl and kz. The Euclidian distance-based

intelligibility measure compares the temporal envelopes of the
clean and processed speech by using the Euclidian distance
coefficients.

IV. SPEECH ENHANCEMENT ALGORITHMS

Noise reduction algorithms for speech can be classified into
the following four primary types: (1) spectral subtractive, (2)
Wiener (3) statistical model-based, and (4) subspace-based
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algorithms.

A. Spectral Subtractive-Type Algorithms

These types of algorithms are notably simple and are
commonly used in speech enhancement. Spectral subtractive-
type algorithms are based on the estimation of the noise
spectral amplitude from an observed speech signal, and this
estimated noise is subtracted from the noisy speech signal.
Some studies have proposed an oversubtraction parameter that
compares with other well-established methods [27], and other
studies have implemented nonlinear spectral subtraction [28].

A limitation of spectral subtractive-type algorithms is that
most of them do not consider the speech spectral property;
hence, the estimation error produces isolated peaks in the
denoised speech; these peaks are known as musical noise [2].
The basic block diagram of spectral subtractive-type
algorithms is given in Fig. 2. To overcome the effect of
musical noise, many algorithms based on the spectral
subtractive principle have been proposed; these algorithms
include spectral oversubtraction, multiband-SS, parametric-
SS, Scalart-SS, and RDC-SS. The spectral oversubtraction
method assumes that the noise spectrum uniformly affects the
speech spectrum; therefore, fixed values of the subtraction
parameters are used in this method. Consequently, this method
is not practically suitable for all noise environments and
results in decreased speech intelligibility.

Noisy | DFT
Speech Y
VAD + Noise
Estimation
Enhanced —
<«
Speech € IDFT

Fig. 2 Block diagram of basic spectral subtractive-type
algorithms

To overcome the fixed subtraction parameters used in the
spectral oversubtraction method, a multiband spectral
subtraction method that divides the noisy speech signal into a
number of nonoverlapping bands is proposed, and denoising is
performed by readjusting the oversubtraction factors in each
band. Because real-world noises are highly nonstationary, the
musical noise problem is not removed completely and results
in decreased intelligibility. Many other spectral subtractive-
type algorithms have also been developed, but no algorithm is
highly effective in improving intelligibility.
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B. Wiener Methods

The speech and noise spectral probabilistic properties are
incorporated in the form of Wiener filtering methods (i.e., the
adaptive Wiener, two-stage mel-warped Wiener, and Wiener
Scalart) to reduce musical noise [29], [30]. These algorithms
assume that speech is a stationary signal and requires a fixed
frequency response at all frequencies. Therefore, Wiener
filtering methods are also not effective for increasing speech
intelligibility.

The basic block diagram of generalized Wiener filtering is
shown in Fig. 3. The experimental results prove that,
compared with spectral subtractive-type algorithms, Wiener
filtering methods are effective for increasing quality (i.e.,
SNR) but not speech intelligibility.

Enhanced
Speech

Fig. 3 Block diagram of generalized Wiener filtering

C. Statistical Model-Based Algorithms

The statistical model-based algorithms are highly efficient
and historically important for speech enhancement.

Let x(t) denote the pure speech signal and d(t) denote the
noise signal; then, the input noisy speech signal y(t) is given
by equation (12) and in the frequency domain given in
equation (13), where i is the frame index and Kk is the
frequency point. The priori and posteriori SNR are given in
equations (14) and (15), respectively, as explained in [3] and

[4].

y@®) =x@)+d@®), 0<t<T (12)
Y(i,k) = X(i,k) + D(i, k) (13)
A (ik)
Sike = A;Eli,k) (14)
Y (i,k)|?
= (15)

where A, and A, are the pure speech signal variance and noise
signal variance, respectively. The Fourier expansion
coefficients of the speech and noise process are statistically
independent Gaussian random variables [5]; hence, the
amplitude of the speech signal DFT coefficient X is derived
based on the MMSE criterion and estimated as in equation
(16):

£ = 0" [+ vy () + vy ()] Y (16)

where |y and |, denote the modified Bessel functions of zero
and first order, respectively; and where Vjkis defined by

ik (17)

Many statistical model-based algorithms (i.e., log-MMSE
[5], STSA-MMSE [4], and Cohen-MMSE [3]) have been
proposed with an efficient gain and a better method of
obtaining the a priori SNR. The limitation of these types of
algorithms is that the estimation of the a priori SNR is
difficult and mathematically complex. In terms of improving
speech quality, i.e., for SNR improvement, statistical model-

Vik =
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based algorithms work better but do not produce significant
improvement in speech intelligibility.

D.Subspace-Based Algorithms

Subspace-based algorithms estimate clean speech by
canceling the noise subspace signal from the noisy signal
subspace. Many algorithms are based on the subspace
principle. In these types of methods, either singular value
decomposition (SVD) [31], [32] or eigenvalue decomposition
(EVD) [29], [30], [33], [34] is used in the signal subspace
decomposition. The SVD-based method was proposed by
Dendrinos et al. [31], and an enhanced signal was
reconstructed from the information that has the largest
singular values. The limitation of this method is that it is
applicable only for white noise. An upgraded version was
provided by Jensen et al. [32] and is effective for colored
noise. Ephraim and Van Trees [34] (EV) proposed a subspace-
based method using the Karhunen-Loeve transform (KLT). In
this method, the signal subspace containing information was
modified using a gain function, and the noise subspace was
nullified. The results also show that, compared to other
methods, the subspace-based method produces superior speech
intelligibility.

V.SIMULATION AND EXPERIMENTS

A. Speech Corpus and Noises

The clean speech patterns are taken from the NOIZEUS
database, which is composed of 30 balanced sentences
recorded by six speakers (three males and three females) [35].
This database is constructed from various additive noises at
different SNR levels (i.e., 0 dB, 5 dB, 10 dB, and 15 dB). In
this study, all levels of SNRs are evaluated for intelligibility.
The noises used in the evaluation are described as airport,
babble, car, exhibition, restaurant, street, train, and station. All
patterns of the corpus are sampled at 8 kHz. The performances
are compared in terms of speech intelligibility measure
parameters, such as MOS, fAl and STOI, fw-SSNR, and
Euclidian distance (EUI).

B. Experimental Results

The purpose of this study is to assess the ability of noise
reduction algorithms to enhance speech intelligibility. The
Euclidian distance-based speech intelligibility measure
parameter is also evaluated and compared with other
parameters. The four major categories of speech enhancement
algorithms are evaluated for their performance in enhancing
speech intelligibility. These methods are presented according
to their category.

1) Spectral subtraction-based methods, such as the Berouti-
SS, multiband-SS, Boll-SS, parametric-SS, Scalart-SS,
and RDC-SS

2) Statistical model-based methods, such as the log-MMSE,
STSA-MMSE, and Cohen-MMSE

3) Subspace-based methods, such as the Karhunen-Loeve
transform (KLT) and PKLT

4) Wiener-based methods, i.e., the Wiener Scalart algorithm



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.45 Volume 14, 2020

1) Intelligibility Evaluation at 0 dB Input are given in Table I. The time domain KLT method produces
Single-channel speech enhancement methods are evaluated  the
at 0 dB input noises. The experimental results for all noises
Table I. Results for 0 dB noise

Speech . o Restau- . .
Methods . A Airport  Babble Car Exhibition Street Train Station
intelligibility rant
sS Al 0.1832_0.1679 02254 024 02459 0268 0.1954  0.1004
Beroutiet | STOI 0.6144  0.6163 07696  0.6385 06393  0.6878 0.6847 0.7331
al. [1] MOS 03008 03063 03292  0.284 03202 03234 02932 03402
fw-SSNR 58484 5849 59032  5.4941 6074 58725 59515 63312
Euclidian 03545 03288 03616  0.3309 03446 0353 03388 03655
Multiband | f-Al 0.1583  0.1446  0.1687  0.209 0.1689 02196 0.1133  0.0859
ss sTOI 05827 05914 06392  0.6219 05818 0615 06363  0.6409
Kamath | MOS 03167 0306 03273 02795 03141 03184 02877 03318
and ;(]"20“ fw-SSNR 53908 57629 54199 57274 54241 57201 57874  5.8013
Euclidian 03406 03245 03447 03228 03332 03355 03304 03482
Boll[2] | fAl 0.1698 0.189  0.1461  0.1637 02168  0.1866 0.1078  0.0645
sS sTOI 0595 063 06163 0.6497 06199 05939 05865 0.6029
MOS 028 02956 02515 02476 02569 02562 02552 02776
fw-SSNR 53854 53667 55141 53585 56331 57218 52417 52576
Euclidian 03357 03335 03203 03212 03271 03118 02961 03127
Parametric | f-Al 0.1228  0.1931 01223  0.1547 02026 0.1997 0.0946 0.0623
ss sTOI 0548 0.5566 0.6145  0.5802 05167 05992 05453 05977
[11] MOS 02745 02988 02886 02511 02655 02706 02783 02377
fw-SSNR 52502 52123 49964 54612 48499 54886 54115  4.8369
Euclidian 03185 0317 03146  0.3052 03027 03152 02948 03177
Scalartand | f-Al 0.1267 02236  0.1925 0292 01969 02512 0.131  0.0877
Filho [10] | STOI 0.6275 0.6247 0.663  0.6615 06159 065 06507 0.6749
sS MOS 03169 03128 0324 02742 03 03084 02907 0347
fw-SSNR 50484 54959 58731  5.4986 6.0493 55842 56009 6313
Euclidian 03476 03346 03487 03321 03404 03465 0.6404 03525
f-Al 0.0977 0.1729 0.1127 0.1412 0.1812  0.1599 0.0846  0.0561
Log sTOI 05655  0.5549  0.6148  0.5873 05446  0.6006 0.6003 0.6178
MMSE | Mos 02965 03088 0301  0.2603 02966 02904 02932 03183
(5] fw-SSNR 49237 53388  5.1477  5.1832 52132 54461 52379 52446
Euclidian 03131 0317 03156  0.3052 0305 03057 03071 03215
MMSE | f-Al 0.1175 01956 0.1528 0.1712 02035 0.1938  0.0959  0.0609
STSA sTOI 05651 05718  0.6159  0.597 05659 05923 05757  0.6008
MOS 0318 03147 0311 0271 02905 02995 02877 02626
fw-SSNR 54813 55476 554 56469 57512 5.665 54502  5.6958
[4] Euclidian 03241 03246 03244 03153 0318 03179 03114 03256
Cohen | f-Al 0172 01775 0.1454  0.2803 02404 02322  0.1178 00719
3] sTOI 05905  0.6519 06326 0.6888 05876 06121 06211  0.6363
MMSE | Mos 02864 03112 03016 02757 02701 02613 02699 03007
fw-SSNR 55518 58875 53719  6.0655 53119 51644 49409 53829
Euclidian 0343 03441 03322 03571 03319 03295 03257 03442
Wiener | f-AI 0.0906 0.1615 0.1039  0.1313 0.1521  0.1358 0.0784  0.0535
Scalartand | STOI 0.5345  0.5415 05652  0.5325 04939 05082 05338 05725
Filho [10] | MOS 0248 02873 02468 02325 02526 02351 02498 02539
fw-SSNR 41757 46882 42596  4.1412 40784 39424 41532 4268
Euclidian 02901 03081 02873  0.2793 02841 02691 02728 02874
RDC f-Al 0.0593  0.0985 0.0453  0.0969 0037 0029 00414 0021
sS sTOI 0.6923  0.6694 0.6898  0.7297 05967 06321 06109 0.6946
MOS 03245 03055 03126 02795 03092 02728 0282 03219
6] fw-SSNR 53379 57622 44967  5.1137 51996  3.6984 44714 51024
Euclidian 03565 03368 0347  0.3559 03245 03182 03143 03508
f-Al 0.1263  0.1864 0.1267 0.2836 00749  0.1155 00669 0.0443
sTOI 0.6942  0.6908 07168  0.7206 05738 0.6063 05682  0.6466
PKLT[8] | MOS 02692 02863 0263 02461 02278 0243 02468 02414
fw-SSNR 43131 53468 5.1162 48712 40492 25294 27648 39817
Euclidian 03226 03472 03174  0.3461 02836 02822 02705 02838
KLT f-Al 0.1888 02359  0.1108  0.3565 00739 0.0968 00462  0.04
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STOI 0.7311  0.6947  0.662 0.773
[7] MOS 03228 03154 0.3206 0.2853
fw-SSNR 6.1794 59173  5.4454  6.2527
Euclidian 0.361 0.3519 0.3556  0.3823
uUn- f-Al 02261  0.2349  0.2669  0.3573
Processed STOI 0.6741  0.6551  0.6854  0.7275
Results MOS 03224 03179 03225 0.2824
fw-SSNR 5.5729  6.125 52505  5.1968
Euclidian 03641  0.3408  0.353 0.3737

maximum improvement in airport, babble, and exhibition
noise environments. The Berouti-SS method provides
maximum speech intelligibility in the presence of car,
restaurant, street, train, and station noises. The Euclidian
distance values are greater than unprocessed speech in noise
environments. Of the twelve algorithms, only two algorithms
perform well in improving intelligibility.
2) Intelligibility Evaluation at 5 dB Input

The intelligibility measure parameter values at 5 dB noises

Volume 14, 2020

0.6217  0.6593  0.668 0.6561
0.2549  0.2381  0.2668  0.2873
4.1912 34198 3.074 4.5072
03112 0.302 0.2997  0.3275
02659 03429 02214 0.111

0.6841  0.7343  0.7143  0.6809
02958 03172 02932 03277
6.5424  6.1058 59636  5.4357
03611 03783 03578  0.3606

intelligibility, comparable to unprocessed speech. Compared
to other methods, the Boll-SS method provides greater
intelligible speech in airport, babble, train, and restaurant
environments.

In the case of street and station noises, the Cohen-MMSE
method [3], compared to other methods, results in greater
improvement in intelligibility because this method utilizes a
log-spectral amplitude estimator to effectively reduce the
effect of noise degradation in the signal. Table II shows that,

are given in Table II. In car and exhibition noise in relation to the unprocessed speech intelligibility values for
environments, the KLT method produces maximum all
Table I1. Results for 5 dB noise
Speech . o Restau- ' '
Methods . S Airport  Babble Car Exhibition Street Train Station
intelligibility rant
f-Al 0.2981 0.2576 0.3003 0.3261 0.3859 0.3569  0.3157 0.3031
Berouti et STOI 0.726 0.7049 0.742 0.704 0.7884 0.7191 0.7199  0.7497
al. [1] MOS 0.3491 0.3639 0.3667 0.3156 0.3736 0.3523  0.3367 0.3657
SS fw-SSNR 7.4247 7.3508 7.5977 6.9752 8.3515 8.2473  7.8207  7.8366
Euclidian 0.3984 0.3899 0.4044 0.3688 0.4373 0.3946  0.383 0.4087
f-Al 0.2693 0.2157 0.2611 0.2918 0.3799 03177  0.2865  0.2822
Multiband STOI 0.6982 0.6701 0.7101 0.6738 0.7719 0.6836  0.7032  0.7116
SS[9] MOS 0.3447 0.355 0.3671 0.3219 0.3743 0.3481 0.3442  0.3736
fw-SSNR 7.1173 6.8852 7.0273 6.9815 7.996 7.7419  7.5199  7.5129
Euclidian 0.3769 0.3705 3797 0.3517 0.4285 0.376 0.3786  0.3882
Boll [2] f-Al 0.3714 0.3559  0.3684 0.4754 0.394 0.3458  0.3923  0.2672
SS STOI 0.838 0.8332 0.7979 0.7788 0.8462 0.7268 0.8158  0.7606
MOS 0.351 0.3942 0.4097 0.3198 0.3783 0.3465 0.3757 0.3486
fw-SSNR 7.6301 7.8255 8.382 8.0021 8.6628 7.6049  8.775 7.2864
Euclidian 0.4329 0.4448 0.4328 0.4356 0.445 0.3913 04367 0.3946
Parametric f-Al 0.2853 0.22 0.2891 0.4392 0.3423 0.2677 0.3484  0.2347
SS [11] STOI 0.6923 0.6558 0.7016 0.6909 0.717 0.6281 0.7078  0.6926
MOS 0.3101 0.3601 0.325 0.3198 0.3627 0.351 0.36 0.3527
fw-SSNR 6.2644 6.4045 6.8467 6.9423 7.1432 6.6055 7.1647 64718
Euclidian 0.3524 0.3584 0.3563 0.3614 0.3803 0.3481 0.3697  0.3484
Scalart and | f-Al 0.341 0.3417 0.3575 0.4586 0.3834 0.3755 03797 0.3323
Filho [10] STOI 0.7599 0.7427 0.7602 0.7592 0.7993 0.7111 0.7681 0.7604
SS MOS 0.3345 0.3833  0.3906 0.3311 0.3765 0.3582  0.5556  0.3895
fw-SSNR 6.9587 7.444 7.8284 7.4987 8.1603 8.116 8.2573  7.9824
Euclidian 0.3946 0.402 0.4051 0.408 0.426 0.3917 04012  0.4033
f-Al 0.2346 0.1997 0.2591 0.4001 0.3157 0.24 0.3109  0.1975
Log STOI 0.6927 0.6757 0.7034 0.6801 0.7148 0.6479  0.7063  0.6843
MMSE [5] MOS 0.3139 0.3761 0.3567 0.3326 0.3709 0.361 0.359 0.3758
fw-SSNR 5.8245 6.1859 607038  6.5913 7.0438 6.5409  7.2585 6.2999
Euclidian 0.3464 0.3507 0.3474 0.3483 0.3689 0.3418  0.3634  0.3421
f-Al 0.2788 0.2771 0.2882 0.4301 0.3432 0.3072  0.3417  0.2637
MMSE STOI 0.688 0.6683 0.6901 0.6938 0.7406 0.6604  0.7109  0.6906
STSA [4] MOS 0.3379 0.3917 0.3817 0.3348 0.3783 0.3665 0.3671 0.3928
fw-SSNR 6.6531 7.1336 7.1794 7.2237 7.6425 7.714 7.7188  7.2274
Euclidian 0.3584 0.3629 0.3576 0.3676 0.389 0.3603  0.3727 0.3574
Cohen [3] f-Al 0.3644 0.3559 0.3011 0.4803 0.3798 0.3832  0.3756 0.3274
MMSE STOI 0.766 0.7282 0.79 0.7536 0.8139 0.798 0.781 0.8368
MOS 0.3429 0.3766 0.3812 0.3253 0.3761 0.3705 0.3594  0.4041
fw-SSNR 7.4707 7.3481 7.3879 7.709 8.5288 8.31 7.9965 8.0464
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Euclidian 04226 04121 04225 0.4204 0.4436  0.4037 0417 0.4262
Wiener f-Al 0.1691  0.1865  0.198 0.3765 03051  0.2281 0.2627  0.1792
Scalartand | STOI 0.6544  0.6719 0.6701  0.6548 0.6883  0.6383  0.7092  0.6859
Filho [10] MOS 0.2834 03401  0.2903  0.301 03501  0.3243 0.3541 03145
fw-SSNR 43201 53549  5.565 5.5364 6.0506 54237 63391 5311
Euclidian 0.322 0.3369 03199  0.3293 03548  0.3262 03536  0.3253
f-Al 0.1442  0.1494 0.1118  0.2084 0.1388  0.171 0.1751  0.1353
RDC STOI 0.8118  0.7904 0.7873  0.8011 0.8169  0.7676  0.7746  0.7943
SS [6] MOS 0.338 0.3544 03519  0.3193 03616  0.3329  0.3288  0.3468
fw-SSNR 604586  6.956 62522 7.1371 72741  7.5126  7.5813  7.1566
Euclidian 0.4092 03988  0.3975  0.4003 0.4061  0.3822  0.3875  0.3985
f-Al 0.304 03106 03189  0.4539 0.2901  0.2478 0.3703  0.2713
STOI 0.8145  0.8151 0.8223  0.8079 0.8186  0.788 0.8048  0.8034
PKLT [8] MOS 03296  0.3455 0.3314  0.3033 0.2921  0.2903  0.3327 3322
fw-SSNR 6.1607 64768  6.9921  6.439 7.5189 73937 79275 69152
Euclidian 0.4006  0.4136  0.3922  0.4283 0.4083  0.3686  0.4273  0.3852
f-Al 02857 03142 03771  0.4812 02858  0.2152  0.3917  0.2539
STOI 0.8007  0.8332  0.8553  0.8374 0.8289  0.7108 0.8082  0.7554
KLT [7] MOS 03365 03558  0.413 0.6406 03586  0.3195 0.3618 0.3843
fw-SSNR 6.8598  7.5021  8.4308  8.015 82439  7.1799  8.775 7.6065
Euclidian 0.4294  0.4448 04373  0.4625 0.444 03926 04367 04114
Un- f-Al 03598 03634 0.3896  0.4805 0.2869  0.3848 0.3834 0.336
Processed | STOI 0.7899  0.78 0.7763  0.8035 0.8297  0.7471  0.7903  0.7559
Results MOS 0.3416 03693  0.3537 0.3115 03612  0.3375 0.3304 0.3429
fw-SSNR 7.1762  8.1636  7.2454  7.0135 8.2481 83451 8.0673  7.3281
Euclidian 0.4193 04181 04124 0.4428 0.4417  0.3985 0.4086  0.3928
Table I11. Results for 10 dB noise
Speech . o Restan- . .
Methods . S Airport  Babble Car Exhibition Street Train Station
intelligibility rant
Beroutiet | f-Al 0.5513  0.5508  0.5135  0.6282 0.5689  0.5624  0.5302  0.36
al. [1] STOI 0.9251 0.9054  0.8452  0.9323 0.9058  0.9237  0.8198  0.8053
SS MOS 04776 04512 04319  0.4268 0.4595 04758  0.4035  0.3855
fw-SSNR 11.0156 11.273 10.0212  11.919 11.5887 11.7822 10.3666 8.5436
Euclidian 0.5552  0.5403 0.5082  0.576 0.5663  0.5396  0.4749  0.4351
f-Al 0.5489  0.5462 04974  0.6235 0.5674  0.5612  0.5169  0.3096
Multiband | STOI 0.8938  0.8832  0.8207  0.9107 0.8969  0.8909  0.8075  0.7661
SS[9] MOS 0.462 0.4337 04336 04155 0.4338 0474 0.4173 0.3855
fw-SSNR 10.9623  11.0839 9.5678 11.7767 11.2932  11.4364 908560  7.9983
Euclidian 0.5508  0.5359  0.4832  0.5679 0.5616  0.538 0.4702  0.4061
Boll [2] f-Al 0.5432  0.5406  0.5428  0.6167 0.5514  0.5473  0.5457  0.4598
SS STOI 0.9004  0.8906  0.9124  0.9067 0.8911 0.8973 09107  0.8422
MOS 0.4681 0.4271 0.4696  0.4192 0.4544 04747 04379  0.3872
fw-SSNR 10.8375 10.7561 10.653 10.6965 10.981 11.0703  10.8549 7.9674
Euclidian 0.5275  0.5263 0.5271 0.5422 0.5348  0.5267  0.5297  0.4289
Parametric | f-Al 0.5015  0.4769  0.495 0.5596 0.5026  0.5205  0.5007  0.3226
SS[11] STOI 0.8274  0.8102  0.837 0.8109 0.8059  0.8279  0.8011 0.7343
MOS 0.4509  0.4014 04665  0.3928 0.4435  0.4531 0.4154  0.3888
fw-SSNR 9.3585 8.8349  0.9878 8.9306 9.8533 9.4227 901996  7.1446
Euclidian 0.4549 04367 04365  0.4398 0.4588  0.4588  0.4405 03716
Scalartand | f-Al 0.53 0.507 0.527 0.5841 0.5277  0.5352  0.5259  0.4864
Filho [10] STOI 0.8761 0.8567  0.874 0.8707 0.8563  0.879 0.8646  0.8516
SS MOS 0.4478 04178  0.4432  0.4075 0.4333 04622 04198  0.4203
fw-SSNR 10.1897  9.3795 10.0616 10.1054 10.5164 10.6086 10.8242  8.3029
Euclidian 0.5063  0.4824  0.4927  0.4898 0.5007  0.5028  0.4881 0.4428
f-Al 04642 04276 04584  0.5206 0.458 0.4831 0.4723 0.2859
Log STOI 0.8069  0.7954  0.8118  0.7984 0.7856  0.816 0.7939  0.7453
MMSE [5] MOS 04766 04198 04649  0.4063 0.4571 0.4611 0.437 0.4141
fw-SSNR 806058  8.0562 8.3401 806492 9.2284  9.0828 89789  6.88
Euclidian 04272  0.4143 0.408 0.4123 0.4288  0.4328  0.4233 0.3606
f-Al 0.4853 04542 04788  0.5478 0.4852  0.5005  0.4839  0.358
MMSE STOI 0.8209  0.8008  0.8125  0.8086 0.8012  0.8322  0.8012  0.7609
STSA[4] MOS 0.4641 0.4249 04662 0413 0.4499 04627  0.4206  0.4396
fw-SSNR 9.5272 89744  9.2097  9.4014 9.7576  9.8324  9.8627  7.7526
Euclidian 0.4511 0.4336  0.4288  0.4332 0.4512  0.4542 04389  0.3812
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f-Al 0.5426  0.5326  0.5387  0.6141 0.555 0.5536  0.5434 04224
Cohen [3] | STOI 0.881 0.8626  0.8734  0.8757 0.8624  0.8763  0.8581 0.7988
MMSE MOS 04772 0436 0.4586  0.4159 0.4328  0.4649  0.4285 0.3946
fw-SSNR 10.7271 104701 10.2181 10.4266 10.6736  10.875 10.595 7.6441
Euclidian 0.5357  0.514 0.5179  0.5253 0.5273  0.5272  0.507 0.4372
Wiener f-Al 0.4527  0.4113 0.4481 0.5071 0.4398  0.4743  0.462 0.2698
Scalart and STOI 0.8107  0.7896  0.8072  0.7972 0.7738  0.8116  0.7917  0.7202
Filho [10] MOS 0.474 03864  0.4432  0.3762 0.4244 04335 0411 0.3213
fw-SSNR 7.6494  6.9945 7.1947 74519 0.5794  8.0682  7.8255  5.6371
Euclidian 0.416 0.4003 0.3928  0.4004 0.4129  0.4208  0.413 0.3402
f-Al 02513  0.3321 0.2553  0.3567 0.2496  0.2939  0.2749  0.2569
RDC STOI 0.8852  0.8741 0.8776  0.9021 0.8674  0.8853  0.8636  0.8544
SS [6] MOS 04135 04106 04232  0.3981 04189 04358  0.3721 0.3717
fw-SSNR 9.1437  9.7213 9.1842 10.5557 10.0973  9.8525 9.4949  7.6391
Euclidian 0.4738  0.4781 0.4654  0.4892 0.467 04712 04529 04377
f-Al 0.4904  0.4867  0.4894  0.5872 0.4834  0.4834  0.4956  0.4868
STOI 0.9063  0.8954  0.8943  0.9166 0.8939  0.9101 0.8937  0.8709
PKLT [8] MOS 0.4278  0.3907  0.3811 0.3853 03768  0.4307 04226  0.3858
fw-SSNR 9.2342  9.8517  9.1675 10.1836 9.2893 11.056  9.9423 7.3121
Euclidian 0.5044  0.5058  0.4891 0.5497 0.5043  0.5145  0.5087  0.4669
f-Al 0.5111 0.4967  0.4796  0.5936 0.4821 0.4798  0.49 0.4884
STOI 0.8986  0.8852  0.9024  0.9323 0.9056 09119  0.9027  0.8921
KLT [7] MOS 04715  0.3996  0.433 0.4253 0.4121 04612 04167  0.4427
fw-SSNR 10.9226  10.0507  9.8856 11.1779 10.2893  11.1513 10.7352  8.5959
Euclidian 0.5525  0.5391 0.5158  0.5693 0.5347  0.5325  0.5278  0.4838
Un- f-Al 0.5295  0.5369  0.5362  0.63 0.5547  0.5313  0.5334  0.535
Processed | STOI 0.8875  0.8775 0.8719  0.9152 0.9047  0.8861 0.881 0.8738
Results MOS 0.4028 03976 03977  0.3869 04215 04362  0.3817  0.3837
fw-SSNR 9.8534 10.5963  10.0502 10.4018 11.6193 11.1714 10.8161 9.8693
Euclidian 0.5166  0.5146  0.4998  0.5711 0.5534  0.5123  0.502 0.4867
Table IV. Results for 15 dB noise
Speech . o Restau- . .
Methods . P Airport ~ Babble Car Exhibition Street Train Station
intelligibility rant
Beroutiet | f-Al 0.6485  0.605 0.6277  0.6447 0.6577  0.5958  0.5958  0.6813
al. [1] STOI 0.9598  0.9521 0.959 0.9557 0.9452 09369  0.9369  0.9569
SS MOS 0.5635  0.5374  0.598 0.5043 0.5292  0.488 0.488 0.4961
fw-SSNR 143136  13.7854 14.0339 13.8722 14.4848  13.5211 13.5211 14.1595
Euclidian 0.6591 0.6354  0.6514  0.6468 0.6457  0.6075  0.6075  0.6611
f-Al 0.6438  0.603 0.6257  0.6414 0.6557  0.5296  0.5926  0.6763
Multiband | STOI 0.9444 09518  0.9456  0.9496 0.9436  0.9289  0.9289  0.9446
SS[9] MOS 0.5397  0.5404  0.5545  0.5319 0.5325  0.5082  0.5082  0.4921
fw-SSNR 14.0158 13.3274 13.7511 13.4899 14.1079  12.8859 12.8859  13.6903
Euclidian 0.6514  0.629 0.6387  0.636 0.6396  0.5996  0.5996  0.6419
Boll [2] f-Al 0.6288  0.5949  0.6187  0.632 0.6534  0.6012  0.6012  0.6765
SS STOI 0.9469  0.9481 0.9463  0.9482 0.9482  0.9484  0.9484  0.9388
MOS 0.5592 05599  0.5791 0.5479 0.5437  0.5192  0.5192  0.4834
fw-SSNR 12.7015 12.5655 12.4138 12.032 13.1254  12.6851 12.6851 12.0906
Euclidian 0.5949  0.5894  0.5964  0.6006 0.6009  0.6088  0.6088  0.5983
f-Al 0.5836  0.547 0.5684  0.5776 0.6014  0.547 0.547 0.6001
Parametric | STOI 0.8638  0.8626  0.8609  0.8523 0.864 0.862 0.862 0.8365
SS[11] MOS 0.5272  0.5145 0.5817  0.5107 0.504 0.5196  0.5196  0.4385
fw-SSNR 10.8461  10.7994 10.834 10.4685 11.1463  11.2727 11.2727 9.9228
Euclidian 0.5111 0.5056  0.4967  0.4878 0.517 0.5097  0.5097  0.4697
Scalart and f-Al 0.604 0.5623 0.5918  0.5974 0.6181 0.5685  0.5685  0.6287
Filho [10] STOI 09116 09192 09126  0.9106 0.9121 09138 09138  0.8947
ss MOS 0.513 0.5097  0.5357  0.5133 0.5089  0.5077  0.5077  0.4551
fw-SSNR 12.0919 11.5968 12.0918 11.7517 12.1052  12.3957 12.3957 10.306
Euclidian 0.5696  0.5558  0.5599  0.5486 0.565 0.5616  0.5616  0.5199
f-Al 0.532 0.5093 0.5309  0.5418 0.5584  0.5088  0.5088  0.5574
Log STOI 0.8531 0.8499  0.8428  0.8391 0.8588  0.8455  0.8455 0.8183
MMSE [5] MOS 0.5521 0.5369  0.544 0.5249 0.5018  0.5349  0.5349  0.4396
fw-SSNR 9.9556  9.9003 9.808 9.7071 10.2661 10.3662 10.3662  8.7207
Euclidian 0.482 0.4745 0.4594  0.4548 0.4908  0.4765  0.4765 0.4379
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f-Al 0.5617 0.5286 0.5496 0.5678
MMSE STOI 0.8594 0.8587 0.8467 0.8524
STSA [4] MOS 0.5482 0.5359 0.5399 0.5091
fw-SSNR 11.0855 11.1488 10.8957 10.6958
Euclidian 0.5073 0.4986 0.4845 0.4813
f-Al 0.6306 0.5907 0.6131 0.6254
Cohen [3] STOI 0.9212 0.9256 0.9228 0.9161
MMSE MOS 0.5407 0.5445 0.5763 0.5216
fw-SSNR 12.7844  12.3432  12.2711 11.6659
Euclidian 0.6112 0.5936 0.6024 0.5876
. f-Al 0.5144 0.4994 0.5186 0.5284
Wiener
Scalart and STOI 0.8479 0.8449 0.8417 0.8325
Filho [10] MOS 0.5136 0.4985 0.5223 0.483
fw-SSNR 8.6798 8.8244 8.5455 8.4896
Euclidian 0.4659 0.4592 0.4433 0.4384
f-Al 0.3606 0.3946 0.3593 0.3705
RDC STOI 0.9287 0.9356 0.9277 0.9357
SS [6] MOS 0.4984 0.4906 0.4901 0.4626
fw-SSNR 11.913 12.2716  11.6392 11.2421
Euclidian 0.5362 0.547 0.531 0.5295
f-Al 0.5744 0.5818 0.5961 0.6186
STOI 0.9466 0.9516 0.943 0.9442
PKLT [8] MOS 0.4752 0.5329 0.4679 0.4642
fw-SSNR 12.4443  12.8537 12.1614 11.5235
Euclidian 0.5853 0.6185 0.5942 0.6106
f-Al 0.5934 0.6097 0.6012 0.6543
STOI 0.9585 0.9568 0.957 0.9644
KLT [7] MOS 0.5357 0.5615 0.5943 0.561
fw-SSNR 13.0993 13.8292 13.2884 13.9148
Euclidian 0.6264 0.6454 0.6353 0.6495
Un- f-Al 0.6426 0.5891 0.6146 0.6423
Processed STOI 0.9498 0.9427 0.9366 0.9511
Results MOS 0.4871 0.4881 0.4672 0.4453
fw-SSNR 13.3299 13.5476 12.8686 12.7238
Euclidian 0.64 0.609 0.6154 0.6242

noise environments, none of the methods is highly effective in
terms of speech intelligibility improvement.
3) Intelligibility Evaluation at 10 dB Input

Table III shows the intelligibility values of the parameters
before and after processing the speech signal in the presence
of various noises. Two types of algorithms, i.e., the spectral
subtraction and subspace methods, are important for
intelligibility improvement. For airport, babble, exhibition,
restaurant, and street noises, the Berouti-SS method produces
the maximum improvement in intelligibility, and for other
noises, the KL T method is more effective at a 10 dB input.
4) Intelligibility Evaluation at 15 dB Input

The values provided in Table IV show that the KLT method
produces more intelligible speech at the 15 dB input than other
methods, except in the airport, car, and station environments.
For these three noise environments, the Berouti-SS method is
more effective.

VI. FUTURE DIRECTIONS AND ISSUES

Developing a method that can improve speech intelligibility
to a greater extent than unprocessed speech intelligibility is
needed because none of the available speech enhancement
methods produce a speech intelligibility value that is better
than the unprocessed speech intelligibility value.

In this analysis, the phase information of the signal is not
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0.5838 0.5344  0.5344 0.5826
0.8676 0.8578 0.8578 0.832
0.5063 0.5125 0.5125 0.452
11.2715 11.6964 11.6964 9.7919
0.5123 0.5041 0.5041 0.4597
0.6386 0.5985 0.5985 0.66
0.9135 0.918 0918 0.9025
0.5136 0.5315 0.5315 0.4616
12.5415 12.8568 12.8568 11.6487
0.599 0.6034  0.6034 0.5732
0.5452 0.4946  0.4946 0.5385
0.88517  0.8381 0.8381 0.8083
0.47 0.4981 0.4981 0.3909
9.3418 9.0199  9.0199 8.0677
0.4769 0.459 0.459 0.4251
0.3894 0.4161 0.4161 0.4391
0.9392 0.9354  0.9354 0.9361
0.5147 0.4736  0.4736 0.4817
12.8564 11.5022 11.5022 12.1295
0.5432 0.5392 0.5392 0.5459
0.6292 0.593 0.593 0.6267
0.9556 0.9501 0.9501 0.9436
0.4963 0.479 0.479 0.4335
12.8886 11.0246 11.0246 11.9245
0.6207 0.6195 0.6195 0.6118
0.6619 0.6071 6089 0.6423
0.9603 0.9592 0.9592 0.95
0.5451 0.5392 0.5439 0.445
14.6575 13.6047 13.6547 13.2314
0.6481 0.6402 0.6402 0.6376
0.6462 0.6048 0.6048 0.6822
0.9505 0.9521 0.9521 0.9494
0.5018 0.4546  0.4546 0.4833
14.8712 141625 14.1625 14.5885
0.6359 0.6169  0.6169 0.6821

considered in any algorithm. Therefore, we must design an
effective algorithm that also considers the phase information
in speech enhancement.

Because the subjective intelligibility measure is highly
expensive and time consuming, an effective objective speech
intelligibility measure is also required.

VII. CONCLUSIONS

This study presents the intelligibility measure parameters
and speech intelligibility values produced by thirteen widely
used speech enhancement algorithms for eight noises (airport,
babble, car, exhibition, restaurant, street, train, and station) at
four input SNR levels (0 dB, 5 dB, 10 dB, and 15 dB). From
the speech intelligibility parameters values, the following
conclusions are obtained:

e Most of the single-channel speech enhancement
algorithms  cannot significantly improve speech
intelligibility.

e  Only two types of algorithms, i.e., spectral subtractive and
subspace, significantly improve intelligibility.

e The processed speech signal intelligibility values are not
significantly higher than the unprocessed speech signal
intelligibility values.
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